home *** CD-ROM | disk | FTP | other *** search
-
-
-
- DDDDBBBBDDDDSSSSDDDDCCCC((((3333SSSS)))) DDDDBBBBDDDDSSSSDDDDCCCC((((3333SSSS))))
-
-
-
- NNNNAAAAMMMMEEEE
- DBDSDC - compute the singular value decomposition (SVD) of a real N-by-N
- (upper or lower) bidiagonal matrix B
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE DBDSDC( UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ, WORK,
- IWORK, INFO )
-
- CHARACTER COMPQ, UPLO
-
- INTEGER INFO, LDU, LDVT, N
-
- INTEGER IQ( * ), IWORK( * )
-
- DOUBLE PRECISION D( * ), E( * ), Q( * ), U( LDU, * ), VT(
- LDVT, * ), WORK( * )
-
- IIIIMMMMPPPPLLLLEEEEMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN
- These routines are part of the SCSL Scientific Library and can be loaded
- using either the -lscs or the -lscs_mp option. The -lscs_mp option
- directs the linker to use the multi-processor version of the library.
-
- When linking to SCSL with -lscs or -lscs_mp, the default integer size is
- 4 bytes (32 bits). Another version of SCSL is available in which integers
- are 8 bytes (64 bits). This version allows the user access to larger
- memory sizes and helps when porting legacy Cray codes. It can be loaded
- by using the -lscs_i8 option or the -lscs_i8_mp option. A program may use
- only one of the two versions; 4-byte integer and 8-byte integer library
- calls cannot be mixed.
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- DBDSDC computes the singular value decomposition (SVD) of a real N-by-N
- (upper or lower) bidiagonal matrix B: B = U * S * VT, using a divide and
- conquer method, where S is a diagonal matrix with non-negative diagonal
- elements (the singular values of B), and U and VT are orthogonal matrices
- of left and right singular vectors, respectively. DBDSDC can be used to
- compute all singular values, and optionally, singular vectors or singular
- vectors in compact form.
-
- This code makes very mild assumptions about floating point arithmetic. It
- will work on machines with a guard digit in add/subtract, or on those
- binary machines without guard digits which subtract like the Cray X-MP,
- Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on
- hexadecimal or decimal machines without guard digits, but we know of
- none. See DLASD3 for details.
-
- The code currently call DLASDQ if singular values only are desired.
- However, it can be slightly modified to compute singular values using the
- divide and conquer method.
-
-
-
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- DDDDBBBBDDDDSSSSDDDDCCCC((((3333SSSS)))) DDDDBBBBDDDDSSSSDDDDCCCC((((3333SSSS))))
-
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- UPLO (input) CHARACTER*1
- = 'U': B is upper bidiagonal.
- = 'L': B is lower bidiagonal.
-
- COMPQ (input) CHARACTER*1
- Specifies whether singular vectors are to be computed as follows:
- = 'N': Compute singular values only;
- = 'P': Compute singular values and compute singular vectors in
- compact form; = 'I': Compute singular values and singular
- vectors.
-
- N (input) INTEGER
- The order of the matrix B. N >= 0.
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, the n diagonal elements of the bidiagonal matrix B. On
- exit, if INFO=0, the singular values of B.
-
- E (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, the elements of E contain the offdiagonal elements of
- the bidiagonal matrix whose SVD is desired. On exit, E has been
- destroyed.
-
- U (output) DOUBLE PRECISION array, dimension (LDU,N)
- If COMPQ = 'I', then: On exit, if INFO = 0, U contains the left
- singular vectors of the bidiagonal matrix. For other values of
- COMPQ, U is not referenced.
-
- LDU (input) INTEGER
- The leading dimension of the array U. LDU >= 1. If singular
- vectors are desired, then LDU >= max( 1, N ).
-
- VT (output) DOUBLE PRECISION array, dimension (LDVT,N)
- If COMPQ = 'I', then: On exit, if INFO = 0, VT' contains the
- right singular vectors of the bidiagonal matrix. For other
- values of COMPQ, VT is not referenced.
-
- LDVT (input) INTEGER
- The leading dimension of the array VT. LDVT >= 1. If singular
- vectors are desired, then LDVT >= max( 1, N ).
-
- Q (output) DOUBLE PRECISION array, dimension (LDQ)
- If COMPQ = 'P', then: On exit, if INFO = 0, Q and IQ contain
- the left and right singular vectors in a compact form, requiring
- O(N log N) space instead of 2*N**2. In particular, Q contains
- all the DOUBLE PRECISION data in LDQ >= N*(11 + 2*SMLSIZ +
- 8*INT(LOG_2(N/(SMLSIZ+1)))) words of memory, where SMLSIZ is
- returned by ILAENV and is equal to the maximum size of the
- subproblems at the bottom of the computation tree (usually about
- 25). For other values of COMPQ, Q is not referenced.
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-
-
-
- DDDDBBBBDDDDSSSSDDDDCCCC((((3333SSSS)))) DDDDBBBBDDDDSSSSDDDDCCCC((((3333SSSS))))
-
-
-
- IQ (output) INTEGER array, dimension (LDIQ)
- If COMPQ = 'P', then: On exit, if INFO = 0, Q and IQ contain
- the left and right singular vectors in a compact form, requiring
- O(N log N) space instead of 2*N**2. In particular, IQ contains
- all INTEGER data in LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1))))
- words of memory, where SMLSIZ is returned by ILAENV and is equal
- to the maximum size of the subproblems at the bottom of the
- computation tree (usually about 25). For other values of COMPQ,
- IQ is not referenced.
-
- WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)
- If COMPQ = 'N' then LWORK >= (4 * N). If COMPQ = 'P' then LWORK
- >= (6 * N). If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N).
-
- IWORK (workspace) INTEGER array, dimension (8*N)
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: The algorithm failed to compute an singular value. The
- update process of divide and conquer failed.
-
- FFFFUUUURRRRTTTTHHHHEEEERRRR DDDDEEEETTTTAAAAIIIILLLLSSSS
- Based on contributions by
- Ming Gu and Huan Ren, Computer Science Division, University of
- California at Berkeley, USA
-
-
- SSSSEEEEEEEE AAAALLLLSSSSOOOO
- INTRO_LAPACK(3S), INTRO_SCSL(3S)
-
- This man page is available only online.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 3333
-
-
-
-